If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-12x-64=0
a = 2; b = -12; c = -64;
Δ = b2-4ac
Δ = -122-4·2·(-64)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{41}}{2*2}=\frac{12-4\sqrt{41}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{41}}{2*2}=\frac{12+4\sqrt{41}}{4} $
| -1-4(k-6)=-3k+23 | | 100+50x=75x+75 | | 4m+3=7+2m | | x^2-18x=-80. | | 6x–19=3x-10= | | 6x–19=3x-10 | | 3x/5+3=9x/15+7 | | x2-16=19 | | a2-81=0 | | G(-3)=9-5x | | 2x-3+3x=-23 | | 43=2x+6 | | |3x+2|=x+4 | | 3x^2(x^2-2x+1)x=1 | | 15x-12+19x+2=90 | | 10-a/5=7 | | P(x)=(x+6)(x+3)(x-5) | | 5-7v=131 | | 15x-12+19x+2=180 | | 4b=11.6 | | 34x+2-12=180 | | 9x^-50x+25=0 | | x+25-2x-5=180 | | 6x–5=5x+7 | | 4×-5y=-5y+4× | | -7+|9x-6|=26 | | n+-14=0 | | F(x)=(3)x | | 3.7+2.5x=4.5x−12.3 | | 5+4(x-1)=2x=9 | | 6(1-3x)=-36=4x | | 25=(x^2)+14+49 |